Using Mucosal Tissue to Evaluate Effectiveness

Charlene S. Dezzutti, Ph.D. University of Pittsburgh MTN Annual Meeting March 16, 2010

Drug development pathway

Adapted from: Pharmaceutical Research and Manufacturers of America, 2006

What we'll talk about...

- Pre-clinical microbicide testing
- Tissues used for explant cultures
- What can we do with tissue explants?
- Moving toward validation

Pre-clinical testing

- Traditionally done by testing the compound for anti-HIV activity and cellular toxicity
- Primary immune cells or cell lines for high throughput testing
- Handful of laboratories using mucosal tissue explant cultures

Why use mucosal tissues?

- Mucosal tissue is where the virus enters and where the product will be applied
- Tissue consists of relevant cell types (HIV targets) in biologically appropriate ratios
- Surgical remainders
 - do not require patient recruitment
 - obtained within a few hours of surgery
- Endoscopic/colposcopic biopsy
 - require patient recruitment
 - obtained within minutes of scoping and convenient

What tissues are used?

I. McGowan Biologicals 34:201, 2006

Colorectal and ectocervical models

- Colorectal tissue obtained from surgical resections or endoscopic biopsies
 - Non-polarized (Anton/McGowan, Shattock)
 - Polarized (Dezzutti)
- Ectocervical tissue obtained from premenopausal women undergoing hysterectomies
 - Non-polarized (Asin, Shattock)
 - Polarized (Dezzutti, Gupta [with T cell co-culture])

Non-polarized colorectal explants

- 2 mm piece of colorectal tissue
- Explants exposed to virus/microbicide while submerged in media (96 well plate)
- Explant placed on a media-soaked gelfoam raft in a 24-well plate following viral exposure
- Cultured in DMEM/pen/strep/±10% FCS
- Infection determined by presence of p24 in culture supernatants (10-14 days post exposure)

Fletcher, P.S. AIDS 20:1237, 2006

Non-polarized colorectal explants

+

Endoscopic biopsies

Absorbable gelatin sponge

Fletcher, P.S. AIDS 20:1237, 2006

Polarized colorectal explants

- □ 5 mm circular piece of colon (biopsy punch) and muscle is excised
- □ Explant is placed (epithelium on top) on presoaked gelfoam inserted into a transwell
- Explant is sealed with Matrigel around the epithelium

Abner, S. J. Infect. Dis. 192:1545, 2005

Polarized colorectal explants

Non-polarized ectocervical explants

- Human cervical tissue: cut into 2-3mm "explants" (complete RPMI)
- Submerged tissue exposed to virus (2h)
- Wash
- Culture overnight

- Transfer explants to fresh plates
- Culture for 12-14 days to determine infection of explants (p24 in culture supernatant)

Greenhead, P. J. Virol 74:5577, 2000

Polarized ectocervical explants

- □ 5 mm circular piece of ectocervix (biopsy punch) and muscle excised
- Explant inserted through a hole in filter of a transwell insert and sealed with Matrigel around the epithelium

Cummins, J.E. Antimicrob Agents Chemother 51:1770, 2007

Polarized ectocervical explants

Non-polarized vs. polarized

Non-polarized

Pros

- Utilize all tissue
- Perform more replicates
- Models "worst case" scenario

Cons

- Can not evaluate transmission events
- Can not evaluate formulations

Polarized

Pros

- Biologically relevant
- Allows apical application of product/virus
- Model topical and systemic application

Cons

- Limits tissue utilization
- Limited replicates

What can we do with explants?

- Evaluate drug and/or formulation safety
 - MTT assay
 - Histology
 - Drug permeability
- Determine product efficacy
- Ex vivo product testing

Product safety – formulated

Product safety – formulated

MTT assay 250 % Viability of Control Tissue 200 150 100 50 0 Vehicle Vehicle **TFV 1% TFV 1%** Control Control N9 Colorectal **Ectocervical**

Rohan, L.C., et al. PLoS ONE 5(2): e9310 2010

Product safety – formulated

3 of 5 tissues exhibited facture or sloughing of the epithelium

Rohan, L.C., et al. PLoS ONE 5(2): e9310 2010

What can we do with explants?

- Evaluate drug and/or formulation safety
 - MTT assay
 - Histology
 - Drug permeability
- Determine product efficacy
- Ex vivo product testing

Drug permeability

- Tissue is placed
 between donor and
 receptor chambers
- Product is added to donor chamber
- Receptor chamber is sampled at designated time points

TFV permeability

Rohan, L.C., et al. PLoS ONE 5(2): e9310 2010

What can we do with explants?

- Evaluate drug and/or formulation safety
 - MTT assay
 - Histology
 - Drug permeability
- Determine product efficacy
- Ex vivo product testing

Product efficacy - forfortated

Product efficacy

Product efficacy

- □ In the presence of semen
- Model coital independent product use

	рН	Osmolality mmol/kg	Viscosity (cps)
100% semen	8.14	321	3.96
50% semen*	8.11	311	2.19
20% semen*	8.10	310	1.56
1% TFV gel	4.45	3347	3979.3

Dezzutti Lab, unpublished data

Rohan Lab, unpublished data

 No detectable semen enhancing viral infectivity (SEVI) effect

Dezzutti Lab, unpublished data

Dezzutti Lab, unpublished data

Coital independent use

Gel is applied for 1 h, 24 h before (pre) or after (post) exposure to HIV-1

2 of 10 explants not protected regardless of semen

4 of 18 explants not protected regardless of semen

What can we do with explants?

- Evaluate drug and/or formulation safety
 - MTT assay
 - Histology
 - Drug permeability
- Determine product efficacy
- Ex vivo product testing

Ex vivo testing

V2: Baseline; V3: 30 minutes post single dose

Anton, P., McGowan, I. Poster CROI 2009

Ex vivo testing

Non-polarized vs. polarized explants

IHC positive: 88% non-polarized 71% polarized

Explants can be used to...

- Evaluate microbicide safety and efficacy
 - Drug permeability
 - In the presence of semen
 - Multiple formulation types (gel, film, ring)
- Determine ex vivo efficacy
 - Surrogate for clinical efficacy?

Caveats of using explants

- Expensive and cumbersome to obtain
- Independent of hormonal control
- Inability to regenerate/repair
- No vascularization
 - No recruitment of immune cells
- Therefore, explants should be used
 - for the most promising candidates (not for screening)
 - as part of a comprehensive testing algorithm

MTN pre-clinical algorithm

Preclinical testing picture

Acknowledgements

University of Pittsburgh/Magee-Womens Research Institute

- Charlene Dezzutti
 - Nicole Billitto
 - JD Lynam
 - Julie Russo
 - Kevin Uranker
 - Pam Kunjara
- Lisa Rohan
 - Phillip Graebing
 - Lin Wang
 - Lyn Cost
- Bernard Moncla
 - Kara Pryke

Pitt/MWRI

Ian McGowan

St Georges Hospital, London

Patricia Fletcher

 Funding Microbicide Trials Network (NIAID/NIMH/NICHD)

Thank you